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Present approaches to improving the aerodynamic performance of lifting surfaces at hypersonic speeds rely 

on the elementary Newton formula for the pressure at a surface [l, 21. Aerodynamic shapes of fairly high 

supersonic and hypersonic performance have also been developed as waveriders-bodies formed by stream 

surfaces of inviscid flows behind the shock waves of simple configurations, for which exact solutions exist 

P-61. 
In this paper the variational problem for the shape of a thin lifting surface of high hypersonic performance 

is formulated by using analytical expressions obtained in [7, 8] f or the flow around a small-aspect-ratio wing 

at an angle of attack in the next approximation to the Newtonian theory. The solutions of this problem 

define the planform of the lower surface of the wing and its leading edge, ensuring an appreciable increase 

in aerodynamic performance compared with the maximum of Newtonian theory, for a given lift force or 

payload. 

1. WE WILL consider the flow in the thin compressed layer between the forward shock and windward 
surface of a wing, in a hypersonic flow of air moving past the wing without slip at an angle of attack 
cx, in a coordinate system x”yOzO (Fig. 1). The wing thickness, measured from the base plane y” = 0, 
is assumed to be small. As the forward shock layer is strongly compressed, its surface is also close to 
the plane y” = 0 and the small parameter of the thin shock layer method, equal to the density ratio at 
the shock wave, becomes 

X- 1 
&=-+ 

x+1 (x + i)L,tsin*a 
(1.1) 

where x is the adiabatic exponent and M, is the Mach number of the oncoming stream. The passage 
to the limit E-+O (x+ 1, M, + co) is subject to the condition 

R=~xM,~ sin’a=O( 1) (1.2) 

FE. 1. 
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We shall assume that the aspect ratio is of the same order of magnitude as the Mach angle E “* tgol 
in the disturbed flow [7, 8]-this is the most interesting case of three-dimensional flow around a 
wing. 

The first-order dimensionless coordinates in the shock layer, as E-+ 0 are 

X0 Y0 20 
.cc--, y= t= 

C cetga ’ ce% tga 
(1.3) 

where c is a unit of length. 
The asymptotic expansions (small E) of the velocity components V” (u”, v’, w”> along the X0, y”, 2” 

axes, the pressure p” and density p” in the shock layer are 

Cl”/ v ,=coa a+eu(s. y, z)sin a tg a+O(e’) 

u’IV,=eu(r, y, z)sin a+O(e’) 

UYO/ V ,=~‘~.w(a. y, z)sin a+O(e+) 

(PO-PB)IpmVoz=[ l+ep(z, y, z)]sin*a+O(e’) 

p”Ipm=e-‘+p(z. y. 2)+0(e) 

(1.4) 

Substituting (1.4) into the equations of gas-dynamics, we obtain a system of equations of the next 
approximation to the Newtonian one 

Du=Dw=O. Dv=-p,, v,+w,=O (1.5) 
D=a/ax+uaiay+u*aiaz 

As boundary conditions for (1.5) we assume that the wing surface y = b (x, z) is impermeable and 
we impose certain restrictions on the shock y = s (x, z) of which we present only the two that will be 
needed later: 

U’(X, 2) =--s,(x, 3j, wfl(x, z)=--~~(x, 2) (1.6) 

It follows from Eqs (1.5) that the transverse component of the velocity w is conserved along the 
disturbed flow streamlines and may be taken as one of the two independent stream functions: 

fp=w, ~-z-~rt (1.7) 

Suppose that the streamline passing through a point (x, y, z) in the shock layer crosses the shock 
wave at a point [c, s([, {), 1;]. The equation of the streamline in terms of 5 and 5 is obtained from 
(1.6), (1.7): 

t=z+(x-O&(E, 6) (1.8) 

In the case of an attached forward shock, the streamlines running along the wing surface cross the 
shock at points on the leading edge z = Z,(X). Hence, the abscissae c(x, z) of these points satisfy 
the equation 5(.x, e, z) = z,(E’). 

The differentials dy and de satisfy the following relationship for constant X, z [8]: 
dy = t;,(x, E, z)d[. Integrating, we obtain a relationship between the shape of the shock wave and 
the shape of the body [7,8]: 

8(X, z)=b(x, 2) + j Cr(x* E* G4 (1.9) 
tC1z. 2) 

This equation must be solved simultaneously with (1.8). 

2. Let us apply the laws of conservation of mass and momentum to the volume of gas enclosed by 
the shock surface Ss, the windward side of the body S, and the rear side of the shock layer S, i.e. its 
section by the plane x = 1 (Fig. 1). Since the viscosity of air is negligible and the pressure on the 
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windward side of the wing and its bottom surface may be taken to be equal to zero, allowance for 
the impermeability of S, gives 

F=- SS [p"i + p"(V- 
s 

V,)u”]dS-pp,\S; ndS 

‘% 
where n is the unit normal to the shock surface. Projection of F onto the y” and x0 axes gives the 
required components of the aerodynamic force in the attached coordinate system: 

-u,) u”dy”dz” + p,Sr” (2.1) 

x= ss [p” - PO. + p (uO - u,) u”]dy”dz” + pc&F 
8 

(2.2) 

where ST’, Sgo are the areas of the projections of the wing onto the x0.9 and y”z” planes. By (1.3), the 
area of the rear side of the shock layer is 

S’ = 21z”~c~o tg2 a, o = 
ss 

l dydz 
S 

Substituting (1.3) and (1.4) into (2.1) and (2.2) and using (1.2), we obtain expansions of the 
components of the force in powers of E: 

Y 

pcJ~2cz 
= 2~% (1 + eP) sin2 a tg a+ 0 (e”l) 

+$-+SS s (0 + p + utg2a)dydz 

ur = Sr”/(2~$~ tg a) 

x 
pwva2c2 

= - 2El”o (1 - Q) sin* a tg* a -{- 0 (e“‘) 

Q = -- ; s,s dydz 

Hence the aerodynamic performance is (in the velocity system of coordinates) 

K=ctga+ sin a”,,, a (I- Q) + 0 'e2' 

(2.3) 

(2.4) 

(2.5) 

The principal term here is the Newtonian quantity ctga. To determine the correction to first order 
in E, the only function we need to know is U. 

Let us transform the integrals in the formula for Q. We will first change the variables from y. z to 5, z [p = 2, 

@)I: 

Y dy dz = d2(1,E,z)dSdz 

0 f(l, I) 

By the first equation of (1.5), the longitudinal component of the velocity is conserved along streamlines in the 
shock layer. With due attention to the boundary condition (1.6), we see that along the streamlines that cross 
the shock wave at (5, r;) we have u = s,(E;, 1). We need another change of variables, from 5, z to t,<. The 
Jacobian of the transformation is 

so that the derivative 5, in the integrand cancels out. The boundary of the integration domain with respect to 
.$ z consists of three parts: the leading edge 5 = (‘(1, z), a segment of the axis .z = 0 and the rear side 5 = 1. In 
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terms of {,.$ these three parts are described by the equations 5 = x,(0,{ = 0 and 5 = 1, so that the new limits of 
integration are x,(&J and 1 (with respect to l), 0 and j3 = ~~(1) (with respect to 5). This change of variables is 
legitimate provided the transformation 5 = 5(x, 5, z) is one-to-one; in other words, the curves 4 = const should 
not intersect one another or hit the leading edge twice. In addition, the curves <>O should not cut the plane 
z = 0. Violation of these conditions would mean that the streamlines intersected at points of entry to the 
compressed layer or in the plane of symmetry-rendering the situation physically meaningless. In the inverse 
flow problem (considered in this paper) these conditions must be interpreted as constraints on the distribution 
of the transverse inclinations sz(x, z) of the shock layer. 

The integral Q, written in terms of 5, 5 becomes 

Since 5 is tied in the inner integral, s,(E, 5) is the derivative c%(& {)/et. Integrating with respect to 
5, changing the notation 5 to z and similarly transforming the integral u, we finally obtain u = mr and 

Q=~{d(i. z)-S[%@), zl~~t/ if--&Wz 5 (2.6) 
0 0 

The one-dimensional integrals in this formula have a simple geometrical meaning. The integral in 
the denominator is the area of the wing in plan, the integral in the numerator is the area between the 
rear side of the shock layer x = 1 and the projection of the leading edge of the wing onto that plane. 
To obtain possibly much superior performance in the next approximation to the Newtonian one, we 
must require that A < 0, that is, the projection of the edge must lie beneath the section of the shock 
layer. This may be guaranteed by “bending” the forward part of the wing downward, which has the 
effect, first of all, of reducing wave drag. 

3. We will distinguish partial and total optimization: partial optimization means increasing the 
aerodynamic performance K (2.5) by minimizing the functional (2.6) for a given shape of the 
forward shock wave s (x, z) and total optimization involves determining the shape of the shock wave 
for which partial optimization yields the largest value of K. 

It can be shown that both partial and total optimization problems have a non-trivial solution only 
under certain additional constraints, e.g. on the magnitude of the lift, the geometrical parameters of 
the lifting body, and so on. Here we will consider constraints of the isoperimetric type, i.e. 
expressed solely in terms of integrals of the unknown function. 

If the shock is represented by a grid function and the problem of total optimization is treated by 
methods for minimizing functions of several variables, high accuracy can be achieved if the grid is 
fine enough. However, this approach requires a prohibitive amount of computer time on presently 
available hardware. We will therefore use another method here, which also yields an approximate 
solution of the problem of total optimization: we will attempt to optimize the solution for a shock 
wave whose shape is given by a function s(x, z; PI, . . . , PN) depending. on several parameters, and 
then vary the parameters P,, over a certain set to get the required solution. We define s as follows: 

s(3, 2) -a(z)z”+a,(l-z), a(s) =k ln(6+s) (3.1) 

where n > 0, k, 6 > 0 and a0 are parameters defining the shape of the shock. 
The partial optimization problem, in its most general form, is 

Q OPl =min Q[z.(z) I, z~(z)~Z, s(z, z)sC (3.2) 

G 12. (4 I =Go (3.3) 

Here z&c) is the unknown function, which describes the planform of the leading edge and, once the 
shock is given, uniquely defines the wing surface, 2 is a set (class) of functions z,(x) that satisfy (3.3) 
and certain other conditions (smoothness, symmetry and so on), Z is the set of function S,(X) 
defined by (3.1), G is a functional in the isoperimetric condition (3.3) and Go is a given value of G. 
The problem of total optimization will be solved by confining the search to a discrete subset 2’ of 2. 
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A necessary and sufficient condition for (3.2) to hold, subject to constraints (3.3), is that the first 
variation SQ must vanish and the second variation S2Q must be positive over the set 2: 

SQ=O, &“Q=-0, zb (z) ~2 (3.4) 

These conditions are only satisfied for ze(x) E 2, implying the condition 

6G [z, (5) 1-O (3.5) 

which is obtained by varying (3.4). Thus, conditions (3.4) have to be observed not for any variation 
&z,(x) (as in unconstrained optimization) but only for variations 6z,(x) that satisfy (3.5). 

The first and second variation of the functional (2.6) can be written as 

SQ= + [‘6a, - Qb,), PQ = -& [&a, - 2&dQ] 

1 

&a,= s * s, [G z, (2)] 62, (I) dx, 6ulp = f 62, (I) d3: (3.6) 
0 0 

Pa, = ! s,, [2, 2, (x)] [6z, (r)]” dx s 
Let Z&Y) be a function satisfying (3.;) whose variation Sz, makes (3.5) an identity (in short, an 

“admissible” function). If also SQ = 0, then Z&Y) is an extremal curve and, by (3.6), the sufficient 
conditions for Q to have a minimum become 

( {as [z, I, (z)] - Q) 61, (3) dir = 0, 6c: lz, WI = ‘) (3.7) 
0 

The last condition is automatically satisfied if s,,(x, z) >O throughout the region of interest. We 
will now write down (3.7) and (3.8) for a power-shaped shock (3.1). Substituting (3.1) into (3.7), we 
obtain I 

S [a'(&"(~)-~,- Q]t~,(z)dz=O (3.9) 
0 

Since .sXZ(x, z) = FZU’(X) z+’ = &Y-i/(6 + x), condition (3.8) implies the following sufficient 
condition for maximum aerodynamic performance if 6 > 0: k > 0 or signa’ (x) = 1. 

4. We will now solve the partial optimization problem for some specific constraints (3.3). We will 
first consider enhancement of aerodynamic pe~o~ance for a given lift. By (2.3), specification of lift 
is equivalent to specification of the wing area, and condition (3.3) becomes 

P 
uy=u= [1-~o !I (z)] da = 5 z, (z) dz = a,, 

0 0 

Using (3.9) and (4.1), we deduce from (3.7) that 

(4.1) 

(4.2) 

It can be proved that if both functionals (4.2) vanish simultaneously, the coefficients of Sz,(n) in 
both will be proportional (this is the essence of the method of Lagrange multipliers). Thus, we 
obtain 

a’ (2) 2,” (.r) --Qo-Q=A=const 
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when it follows that 

Substituting this equality into the formula for Q for a power-shaped shock, 

(4.3) 

(4.4) 

and using (4.1), we find Q as a function of A: 

Q=hln-a0 (4.5) 

Substituting (4.3) and (4.5) into (4.1), we obtain 

&LfJ” [ i 1 a: (z) I-l/n dr I-“sign a’ (r) 
n+l O ” 

(4.6) 

Thus tile function z,(x) is fully defined and, performing the integration in (1.9) by the methods, say, 
in [9], we can determine the optimum wing surface. 

Another constraint that is frequently met with in practice is a given volume of the lifting body. In 
shock-wave theory, when the pressure on the windward side of the body is negligibly small, such a 
constraint is, strictly speaking, not legitimate. It is more correct to limit the volume of the lower part 
of the body, measuring it from the local level of the wing and so on. In the general case, we may 
assume that some quantity 

1; = ss ’ ’ (6 (I, z) - kvb 1 I, z, (s)]) dr dz = V, 

or 
(4.7) 

is given, where 0 s k,< 1 is a modified parameter characterizing the choice of the reference level. 
We note that b[x, ze(x)] = [ s x, z&x)] because the forward shock is attached. In addition, the 
function 6(x, z) may be isolated from formula (1.9). We may assume without loss of generality that 
kv = (n + 1))‘-this choice greatly simplifies the final results. Then 

I. 

1 $(X1 x 

- x) zc (r) dx - ss s 5: (I, E, z) dg dz c/J 
II 0 0 f(X. 1) 

Dealing with the multiple integral as in the derivation of formula (2.6), we rewrite (4.7) in the 
form 

( $+I)~(1 -x)ze(x)dx = v, 
0 

Thus, if the shock is (3.1), the system of equations (3.8), (3.9) takes the form 

1 (a'(x)z,"(x)-uo-Q]&,(r)dr=O 

0 
1 

s ‘(I -x) 62, (J) dx = 0 
0 

whence we obtain a’(x)z,“(x)-u,,- Q = X(1-x). X = const, 

s,(x) = [ 
Q+a,+h(i-r) -“” 

a’ ix) 1 

(4.8) 

(4.9) 

By (4.9) and (4.4), 
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Substituting these expressions into (4.8) and using (4.1), we can then use numerical techniques to 

solve the resulting equation for ur and thus determine z,(x). 
With regard to total optimization, we draw the reader’s attention to the following point. 
Formula (4.4), which is independent of the specific form of the constraint (3.3), makes Q a linear function of 

the coefficient k (and if aa = 0 it is even directly proportional to the latter). Hence, if k<O, then Q will be 
smaller, and K will therefore be greater than if k>O. However, by (3.1) and (3.10), the solutions (4.9) produce 
lifting bodies of maximum performance (minimum Q) only when k > 0. If k < 0 these solutions describe bodies 
of minimum performance (maximum Q). There is no contradiction, since (4.3) and (4.9) are solutions of the 
partial optimization problem for a shock of given shape, while k<O and k>O correspond, of course, to 
different shocks. Nevertheless, a solution to the total optimization problem must be sought in the region of 
negative k values. 

The fact that for a fixed shock shape and negative k the extremum of the functional (2.6) determines the 
maximum (2 gives grounds for the assumption that Q may be made as large as desired in magnitude by a 
suitable choice of the edge z,(x); in other words, one can make Q tend to --00. Indeed, there are examples 
(when n = Z-even analytical examples) of sequences of functions ze(x) for which Q- -m (K-t m), while at 
the same time or = const. However, the function z,(x) thus obtained is not monotone (the inverse function 
X,(Z) is not well defined)--a situation implying that the shape of the leading edge of the lifting body is 
inadmissible. The important point here is that the inverse problem (1.8)) (1.9) is unsolvable, since the function 
C(X, z) is multivalued; such conditions are physically meaningless, as they mean that the streamlines intersect 
one another on the wing. 

Thus, the total optimization problem is extremely complicated, since, besides a constraint of the type (3.3), 
one must also require that the inverse problems should be solvable and that the shape of the forward edge must 
be geometrically admissible. 

5. The direct approach to total optimization consists in selecting a suitable function s (x, z) from 

some finite subset C’ of the set C of admissible functions (see Sec. 3); for each function s(x, z), the 
partial optimization problem is also solved by selecting the independent parameters that define the 
shape of the leading edge. Considerable attention has been devoted to the large class of lifting 
bodies in which the lateral part of the edge is described by a cubic parabola with axis emanating 
from a point ~~20, inclined at an angle f3 to the x axis (Fig. 2): 

AZ,. cos 8=@ (X/COS O+Az,. sin 0) 

Here I is determined from conditions (3.3), z1 is fixed and A, zo and x1 are free parameters. 
Solution of the optimization problem for a given lift produced the solution Qmin = -0.572 for 

modified parameter values o. = 1.5; z1 - - 1.92; z. = 0.171; x1 = 1; A = -0.5; n = 2; k = -0.5; 

FIG. 2. 
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FIG. 3. 

S 2= 0.4 (Fig. 3). U~t~rn~~at~o~ for a given volume gives Q,i, = -0.592 for the fo~~owj~g mudi~ed 
parameter values: V. = 0.75; zI = I .92; z0 = U.240; x1 = 2; A = -0.34; n = 2; k = -U.S; 6 = 0.4. In 
both cases, a, = 0. 

The ~~~~~w~~g points are worthy of note: 
1. The coefficient k cannot be reduced to Jess than -0.5, since below this vahse the inverse 

problem is no longer solvable, 
2. For every k there is a well-defined value of 6 at which Q becomes a m~n~murn. In particulars for 

k- -0.5 we obtain 6 = 0.4. 
3. Despite the fact that for a fixed function i(x) the integral (4.4) decreases as pz increases, the 

limiting value of the coef~cient k<O for which a solution of the inverse flow ~rob~~rn still exists 
increases rapidly (i.e. decreases in absolute value), so that the optimum I& is obtained at ra = 2 
(parabolic shack). 

The windward surface of the body in both cases considered is blunted (z0>0). In ad~~tjo~, in 
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FIG. 5 

order to eliminate the possibility of the edge being cut twice by the surface streamlines, it was 
necessary to subject the edge to a small parabolic deformation in a narrow strip at the rear. In a 
flight regime with OL = 25” and E = 0.3 the values of Q determined here guarantee fairly high 
hypersonic aerodynamic performance, K = 3.3, which is superior to that of a plate with the same 
flight parameters by a factor of 1.5. 

Figure 3 illustrates the optimal shapes of the lower surfaces of wings (with superimposed 
computational grid) and the rear side of the shock layer for the two cases considered. Transverse 
sections n = const of wings (thin curves) and attached shock are shown in Fig. 4. It is obvious that 
good results are achieved for a wing with concave lower surface and relatively small blunted section, 
by downward bending not of the entire surface but of its peripheral part only, adjoining the leading 
edge (the projection of this part is represented by the dashed curve); even this produces an 
appreciable effect. To realize this procedure, one can set a0 > 0 in (3.1). The wing then has the same 
planform, but the magnitude Q receives a negative increment --a0 . However, for an optimum wing, 
even at a0 = 0 the angle of inclination of the velocity vector of the oncoming stream at the lower 
surface in the longitudinal direction is less than the angle of attack (particularly in the rear), so that 
flow with the formation of a compressed layer is possible only at very small a0 values. 

If allowance is also made for viscosity, assuming, for simplicity, that the local coefficient of 
friction cf is fairly small and constant over the wing area, the aerodynamic performance (2.5) is 
reduced by an amount cflsin4a. Consequently, a ch~acte~stic feature of the how regime 
considered, with finite angle of attack, is that the force of friction does not change the shape of the 
optimal wing and merely reduces the optimum performance; moreover, the effect of friction falls 
rapidly as 01 increases (Fig. 5). Curve 1 in the figure corresponds to C~ = 0, curve 2 to of = 3 X 10M3 
and the dashed line to the Newtonian value K = ctga. 

Viscosity may be responsible not only for drag but also for changes of pressure due to interaction 
of a hypersonic boundary layer with an external inviscid flow. However, the variational problems 
obtained in this formulation are so complicated-even if one uses the simplest tangent-wedge 
formula for the pressure-that one can consider only optimization for a given wing planform (see, 
e.g. [lo]). Nevertheless, even these results indicate that, as determined here, optimum wings 
frequently have a downward bent leading edge. 

REFERENCES 

1. MAIKAPAR G. I., A wing with maximum aerodynamic performance at hypersonic speeds. Ptikl. Mat. Mekh. 30, 
186-189, 1966. 

2. MAIKAPAR G. I., On the optimum shape of lifting bodies at hypersonic speeds. Izv. Akad. Nauk SSSR, Mekh. Zhidk. 
Gaza, No. 2,38-47, 1967. 

3. COLE J. D. and ZIEN T. F., A class of three-dimensiona optimum hypersonic wings. AIAA Paper No. 158, 1968. 
4. MAIKAPAR G. I., The selection of the optimum shape of supersonic aircraft. Uch. Zap. TsAGll8,%27,1987. 



Effect of meridional electric vortex flow 333 

5. KIM B. S., RASMUSSEN M. L. and JUSCHKE M. C., Optimization of waverider configurations generated from 
axisymmetric conical flows. J. Spacecraft Rockets 20,461-469, 1983. 

6. BOWCUTT K., ANDERSON J. D. and CAPRIO’ITI D., Viscous optimized hypersonic waveriders. AIAA Paper 
No. 272, l-18,1987. 

7. GOLUBINSKII A. I. and GOLUBKIN V. N., The three-dimensional hypersonic flow of gas around a thin wing. Dokl. 
Akad. Nauk SSSR 234,1032-1034,1977. 

8. GOLUBINSKII A. I. and NEGODA V. V., Hypersonic three-dimensional flow around a small-aspect-ratio wing. Ilch. 
Zap. TsAGI 14,9-17, 1983. 

9. BAKHVALOV N. S., Numerical Methods, Vol. 1. Nauka, MOSCOW, 1975. 
10. NIKOLAYEV V. S., The optimum shape of a triangular wing for given balancing in viscous hypersonic flow. Uch. Zap 

TsAGI 3,47-55, 1972. 

Translated by D.L. 

1. A@ Maths Mechs Vol. 56, No. 3, Pp. 33s-339, 1992 0021-8928192 $15.00+ .oO 
Printed in Great Britain. 0 1992 Pergamon Press Ltd 

THE EFFECT OF MERIDIONAL ELECTRIC VORTEX FLOW 
ON THE AZIMUTHAL ROTATION OF A FLUID-l- 

N. Yu. KOLPAKOV and V. I. KOLESNICHENKO 

Perm 

(Received 6 February 1991) 

New exact solutions of the Navier-Stokes equations are obtained for spiral axisymmetric flow of a 

conducting fluid in bounded and unbounded regions. Attention is devoted to the influence of the poloidal 

component of the velocity field, generated by the meridional electric vortex flow, on the toroidal 

component due to the rotating boundaries of the region. A two-parameter family of self-similar solutions 

obtained by numerical integration of a system of non-linear ordinary differential equations is investigated. 

It is shown, considering twisted flow around a cylinder in an unbounded region and differential rotation 

between coaxial cylinders, that boundary layer regimes of meridional flow induce a boundary layer 

structure in the azimuthal rotation of the fluid. 

SPIRAL vortex structures in fluids are of interest in connection with phenomena observed when 
magnetic fields are excited by moving conducting media (MHD-dynamos), in the formation of 
large-scale atmospheric eddies, the phenomenon of reverse energy cascade in turbulence, etc. In 
magnetohydrodynamics, three-dimensional vortex flows and magnetic fields are conveniently split 
(depending on the phenomenon under consideration) into mutually interacting toroidal and 
poloidal components [l]. Electric vortex (EV) flows, which are created by the interaction of a 
non-uniform electric current and an intrinsic magnetic field, are of particular interest in MHD. 
When EV flows are investigated in axially symmetric situations, one can find self-similar solutions of 
the MHD equations. In that case, however, only poloidal flows are possible. Toroidal flows, set up 
in the absence of external magnetic fields by azimuthal currents only, are not observed, since in an 
axially symmetric situation the cp-component of the electric field may arise neither from the action of 
external sources nor by induction from the motion of the fluid [2]. To organize a spiral structure, the 
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